Handbook of Learning Analytics
Chapter 14
Handbook of Learning Analytics
First Edition
Provision of Data-Driven Student
Feedback in LA & EDM
Abelardo Pardo, Oleksandra Poquet,
Roberto Martínez-Maldonado & Shane Dawson
Abstract
The areas of learning analytics (LA) and educational data mining (EDM) explore the use of data to increase insight about learning environments and improve the overall quality of experience for students. The focus of both disciplines covers a wide spectrum related to instructional design, tutoring, student engagement, student success, emotional well-being, and so on. This chapter focuses on the potential of combining the knowledge from these disciplines with the existing body of research about the provision of feedback to students. Feedback has been identified as one of the factors that can provide substantial improvement in a learning scenario. Although there is a solid body of work characterizing feedback, the combination with the ubiquitous presence of data about learners offers fertile ground to explore new data-driven student support actions.
Export Citation: Plain Text (APA) BIBTeX RIS
No Supplementary Material Available
Abbas, S., & Sawamura, H. (2009). Developing an argument learning environment using agent-based ITS (ALES). In T. Barnes, M. Desmarais, C. Romero, & S. Ventura (Eds.), Proceedings of the 2nd International Conference on Educational Data Mining (EDM2009), 1–3 July 2009, Cordoba, Spain (pp. 200–209). International Educational Data Mining Society.
Allen, L. K., & McNamara, D. S. (2015). You are your words: Modeling students’ vocabulary knowledge with natural language processing tools. In O. C. Santos et al. (Eds.), Proceedings of the 8th International Conference on Educational Data Mining (EDM2015), 26–29 June 2015, Madrid, Spain (pp. 258–265). International Educational Data Mining Society.
Arnold, K. E., Lonn, S., & Pistilli, M. D. (2014). An exercise in institutional reflection: The learning analytics readiness instrument (LARI). Proceedings of the 4th International Conference on Learning Analytics and Knowledge (LAK ʼ14), 24–28 March 2014, Indianapolis, IN, USA (pp. 163–165). New York: ACM. doi:10.1145/2567574.2567621
Arroyo, I., Meheranian, H., & Woolf, B. P. (2010). Effort-based tutoring: An empirical approach to intelligent tutoring. In R. S. J. d. Baker, A. Merceron, & P. I. Pavlik Jr. (Eds.), Proceedings of the 3rd International Conference on Educational Data Mining (EDM2010), 11–13 June 2010, Pittsburgh, PA, USA (pp. 1–10). International Educational Data Mining Society.
Baepler, P., & Murdoch, C. J. (2010). Academic analytics and data mining in higher education. International Journal for the Scholarship of Teaching and Learning, 4(2). doi:10.20429/ijsotl.2010.040217
Baker, R., & Inventado, P. S. (2014). Educational data mining and learning analytics. In J. A. Larusson & B. White (Eds.), Learning analytics: From research to practice (pp. 61–75). Springer.
Baker, R., & Siemens, G. (2014). Educational data mining and learning analytics. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences. Cambridge University Press.
Bakharia, A., Kitto, K., Pardo, A., Gašević, D., & Dawson, S. (2016). Recipe for success: Lessons learnt from using xAPI within the connected learning analytics toolkit. Proceedings of the 6th International Conference on Learning Analytics and Knowledge (LAK ʼ16), 25–29 April 2016, Edinburgh, UK (pp. 378–382). New York: ACM.
Barker-Plummer, D., Cox, R., & Dale, R. (2009). Dimensions of difficulty in translating natural language into first order logic. In T. Barnes, M. Desmarais, C. Romero, & S. Ventura (Eds.), Proceedings of the 2nd International Conference on Educational Data Mining (EDM2009), 1–3 July 2009, Cordoba, Spain (pp. 220–229). International Educational Data Mining Society.
Barker-Plummer, D., Cox, R., & Dale, R. (2011). Student translations of natural language into logic: The grade grinder corpus release 1.0. In M. Pechenizkiy, T. Calders, C. Conati, S. Ventura, C. Romero, & J. Stamper (Eds.), Proceedings of the 4th Annual Conference on Educational Data Mining (EDM2011), 6–8 July 2011, Eindhoven, The Netherlands (pp. 51–60). International Educational Data Mining Society.
Beheshitha, S. S., Hatala, M., Gašević, D., & Joksimović, S. (2016). The role of achievement goal-orientations when studying effect of learning analytics visualisations. Proceedings of the 6th International Conference on Learning Analytics and Knowledge (LAK ʼ16), 25–29 April 2016, Edinburgh, UK (pp. 54–63). New York: ACM.
Ben-Naim, D., Bain, M., & Marcus, N. (2009). A user-driven and data-driven approach for supporting teachers in reflection and adaptation of adaptive tutorials. In T. Barnes, M. Desmarais, C. Romero, & S. Ventura (Eds.), Proceedings of the 2nd International Conference on Educational Data Mining (EDM2009), 1–3 July 2009, Cordoba, Spain (pp. 21–30). International Educational Data Mining Society.
Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education: Principles, Policy & Practice, 5(1), 7–74. doi:10.1080/0969595980050102
Bouchet, F., Azevedo, R., Kinnebrew, J. S., & Biswas, G. (2012). Identifying students’ characteristic learning behaviors in an intelligent tutoring system fostering self-regulated learning. In K. Yacef, O. Zaïane, A. Hershkovitz, M. Yudelson, & J. Stamper (Eds.), Proceedings of the 5th International Conference on Educational Data Mining (EDM2012), 19–21 June, 2012, Chania, Greece (pp. 65–72). International Educational Data Mining Society.
Boud, D. (2000). Sustainable assessment: Rethinking assessment for the learning society. Studies in Continuing Education, 22(2), 151–167. doi:10.1080/713695728
Boud, D., & Molloy, E. (2013). Rethinking models of feedback for learning: The challenge of design. Assessment & Evaluation in Higher Education, 38(6), 698–712. doi:10.1080/02602938.2012.691462
Brusilovsky, P. (1996). Methods and techniques of adaptive hypermedia. User Modeling and User-Adapted Interaction, 6, 87–129.
Buckingham Shum, S., Sandor, A., Goldsmith, R., Wang, X., Bass, R., & McWilliams, M. (2016). Reflecting on reflective writing analytics: Assessment challenges and iterative evaluation of a prototype tool. Proceedings of the 6th International Conference on Learning Analytics and Knowledge (LAK ʼ16), 25–29 April 2016, Edinburgh, UK (pp. 213–222). New York: ACM.
Bull, S., & Kay, J. (2016). SMILI☺ : A framework for interfaces to learning data in open learner models, learning analytics and related fields. International Journal of Artificial Intelligence in Education, 26(1), 293–331.
Butler, D. L., & Winne, P. H. (1995). Feedback and self-regulated learning: A theoretical synthesis. Review of Educational Research, 65(3), 245–281.
Campbell, J. P., DeBlois, P. B., & Oblinger, D. (2007). Academic analytics: A new tool for a new era. EDUCAUSE Review, 42, 40–57.
Charleer, S., Klerkx, J., & Duval, E. (2015). Exploring inquiry-based learning analytics through interactive surfaces. Proceedings of the Workshop on Visual Aspects of Learning Analytics (VISLA ʼ15), 16–20 March 2015, Poughkeepsie, NY, USA. http://ceur-ws.org/Vol-1518/paper6.pdf
Clow, D. (2012). The learning analytics cycle: Closing the loop effectively. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge (LAK ʼ12), 29 April–2 May 2012, Vancouver, BC, Canada (pp. 134–138). New York: ACM. doi:10.1145/2330601.2330636
Clow, D. (2014). Data wranglers: Human interpreters to help close the feedback loop. Proceedings of the 4th International Conference on Learning Analytics and Knowledge (LAK ʼ14), 24–28 March 2014, Indianapolis, IN, USA (pp. 49–53). New York: ACM. doi:10.1145/2567574.2567603
Corbett, A. T., Koedinger, K. R., & Anderson, J. R. (1997). Intelligent tutoring systems. In M. Heander, T. K. Landauer, & P. Prabhu (Eds.), Handbook of human–computer interaction (2nd ed., pp. 849–870): Elsevier Science B. V.
Corrin, L., & de Barba, P. (2015). How do students interpret feedback delivered via dashboards? Proceedings of the 5th International Conference on Learning Analytics and Knowledge (LAK ʼ15), 16–20 March 2015, Poughkeepsie, NY, USA (pp. 430–431). New York: ACM. doi:10.1145/2723576.2723662
Crossley, S., Allen, L. K., Snow, E. L., & McNamara, D. S. (2015). Pssst… textual features… there is more to automatic essay scoring than just you! Proceedings of the 5th International Conference on Learning Analytics and Knowledge (LAK ʼ15), 16–20 March 2015, Poughkeepsie, NY, USA (pp. 203–207). New York: ACM. doi:10.1145/2723576.2723595
Crossley, S., Kyle, K., McNamara, D. S., & Allen, L. (2014). The importance of grammar and mechanics in writing assessment and instruction: Evidence from data mining. In J. Stamper, Z. Pardos, M. Mavrikis, & B. M. McLaren (Eds.), Proceedings of the 7th International Conference on Educational Data Mining (EDM2014), 4–7 July, London, UK (pp. 300–303). International Educational Data Mining Society.
Dawson, S. (2010). “Seeing” the learning community: An exploration of the development of a resource for monitoring online student networking. British Journal of Educational Technology, 41(5), 736–752.
Dawson, S., Bakharia, A., & Heathcote, E. (2010). SNAPP: Realising the affordances of real-time SNA within networked learning environments. In L. Dirckinck-Holmfeld, V. Hodgson, C. Jones, M. de Laat, D. McConnell, & T. Ryberg (Eds.), Proceedings of the 7th International Conference on Networked Learning (NLC 2010), 3–4 May 2010, Aalborg, Denmark. http://www.networkedlearningconference.org.uk/past/nlc2010/abstracts/PDFs/Dawson.pdf
De Liddo, A., Buckingham Shum, S., & Quinto, I. (2011). Discourse-centric learning analytics. Proceedings of the 1st International Conference on Learning Analytics and Knowledge (LAK ʼ11), 27 February–1 March 2011, Banff, AB, Canada (pp. 23–33). New York: ACM.
Deakin Crick, R., Huang, S., Ahmed Shafi, A., & Goldspink, C. (2015). Developing resilient agency in learning: The internal structure of learning power. British Journal of Educational Studies, 63(2), 121–160. doi:10.1080/00071005.2015.1006574
DeFalco, J. A., Baker, R., & D’Mello, S. K. (2014). Addressing behavioral disengagement in online learning. Design recommendations for intelligent tutoring systems (Vol. 2, pp. 49–56). Orlando, FL: U.S. Army Research Laboratory.
Dominguez, A. K., Yacef, K., & Curran, J. R. (2010). Data mining for generating hints in a python tutor. In R. S. J. d. Baker, A. Merceron, & P. I. Pavlik Jr. (Eds.), Proceedings of the 3rd International Conference on Educational Data Mining (EDM2010), 11–13 June 2010, Pittsburgh, PA, USA (pp. 91–100). International Educational Data Mining Society.
Eagle, M., & Barnes, T. (2013). Evaluation of automatically generated hint feedback. In S. K. DʼMello, R. A. Calvo, & A. Olney (Eds.), Proceedings of the 6th International Conference on Educational Data Mining (EDM2013), 6–9 July 2013, Memphis, TN, USA (pp. 372–374). International Educational Data Mining Society/Springer.
Eagle, M., & Barnes, T. (2014). Data-driven feedback beyond next-step hints. In J. Stamper, Z. Pardos, M. Mavrikis, & B. M. McLaren (Eds.), Proceedings of the 7th International Conference on Educational Data Mining (EDM2014), 4–7 July, London, UK (pp. 444–446). International Educational Data Mining Society.
Evans, C. (2013). Making sense of assessment feedback in higher education. Review of Educational Research, 83(1), 70–120. doi:10.3102/0034654312474350
Ezen-Can, A., & Boyer, K. E. (2013). Unsupervised classification of student dialogue acts with query-likelihood clustering. In S. K. DʼMello, R. A. Calvo, & A. Olney (Eds.), Proceedings of the 6th International Conference on Educational Data Mining (EDM2013), 6–9 July 2013, Memphis, TN, USA (pp. 20–27). International Educational Data Mining Society/Springer.
Ezen-Can, A., & Boyer, K. E. (2015). Choosing to interact: Exploring the relationship between learner personality, attitudes, and tutorial dialogue participation. In O. C. Santos et al. (Eds.), Proceedings of the 8th International Conference on Educational Data Mining (EDM2015), 26–29 June 2015, Madrid, Spain (pp. 125–128). International Educational Data Mining Society.
Fancsali, S. E. (2014). Causal discovery with models: Behavior, affect, and learning in cognitive tutor algebra. In J. Stamper, Z. Pardos, M. Mavrikis, & B. M. McLaren (Eds.), Proceedings of the 7th International Conference on Educational Data Mining (EDM2014), 4–7 July, London, UK (pp. 28–35). International Educational Data Mining Society.
Feng, M., Beck, J. E., & Heffernan, N. T. (2009). Using learning decomposition and bootstrapping with randomization to compare the impact of different educational interventions on learning. In T. Barnes, M. Desmarais, C. Romero, & S. Ventura (Eds.), Proceedings of the 2nd International Conference on Educational Data Mining (EDM2009), 1–3 July 2009, Cordoba, Spain (pp. 51–60). International Educational Data Mining Society.
Ferguson, R., & Buckingham Shum, S. (2012). Social learning analytics: Five approaches. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge (LAK ʼ12), 29 April–2 May 2012, Vancouver, BC, Canada (pp. 23–33). New York: ACM.
Gibson, A., & Kitto, K. (2015). Analysing reflective text for learning analytics: An approach using anomaly recontextualisation. Proceedings of the 5th International Conference on Learning Analytics and Knowledge (LAK ʼ15), 16–20 March 2015, Poughkeepsie, NY, USA (pp. 51–60). New York: ACM. doi:10.1145/2723576.2723635
Goldstein, P. J., & Katz, R. N. (2005). Academic analytics: The uses of management information and technology in higher education. Educause Center for Applied Research.
Graesser, A. C., Conley, M. W., & Olney, A. (2012). Intelligent tutoring systems. In K. R. Harris, S. Graham, & T. Urdan (Eds.), APA educational psychology handbook (pp. 451–473). American Psychological Association.
Grawemeyer, B., Mavrikis, M., Holmes, W., Guitierrez-Santos, S., Wiedmann, M., & Rummel, N. (2016). Affective off-task behaviour: How affect-aware feedback can improve student learning. Proceedings of the 6th International Conference on Learning Analytics and Knowledge (LAK ʼ16), 25–29 April 2016, Edinburgh, UK (pp. 104–113). New York: ACM.
Hattie, J. (2008). Visible learning: A synthesis of over 800 meta-analyses related to achievement. New York: Routledge.
Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81–112. doi:10.3102/003465430298487
Hegazi, M. O., & Abugroon, M. A. (2016). The state of the art on educational data mining in higher education. International Journal of Computer Trends and Technology, 31, 46–56.
Howard, L., Johnson, J., & Neitzel, C. (2010). Examining learner control in a structured inquiry cycle using process mining. In R. S. J. d. Baker, A. Merceron, & P. I. Pavlik Jr. (Eds.), Proceedings of the 3rd International Conference on Educational Data Mining (EDM2010), 11–13 June 2010, Pittsburgh, PA, USA (pp. 71–80). International Educational Data Mining Society.
Jeong, H., & Biswas, G. (2008). Mining student behavior models in learning-by-teaching environments. In R. S. J. d. Baker, T. Barnes, & J. E. Beck (Eds.), Proceedings of the 1st International Conference on Educational Data Mining (EDM’08), 20–21 June 2008, Montreal, QC, Canada (pp. 127–136). International Educational Data Mining Society.
Johnson, S., & Zaïane, O. R. (2012). Deciding on feedback polarity and timing. In K. Yacef, O. Zaïane, A. Hershkovitz, M. Yudelson, & J. Stamper (Eds.), Proceedings of the 5th International Conference on Educational Data Mining (EDM2012), 19–21 June, 2012, Chania, Greece (pp. 220–221). International Educational Data Mining Society.
Kickmeier-Rust, M., Steiner, C. M., & Dietrich, A. (2015). Uncovering learning processes using competence-based knowledge structuring and Hasse diagrams. Proceedings of the Workshop on Visual Aspects of Learning Analytics (VISLA ʼ15), 16–20 March 2015, Poughkeepsie, NY, USA (pp. 36–40).
Kinnebrew, J. S., & Biswas, G. (2012). Identifying learning behaviors by contextualizing differential sequence mining with action features and performance evolution. In K. Yacef, O. Zaïane, A. Hershkovitz, M. Yudelson, & J. Stamper (Eds.), Proceedings of the 5th International Conference on Educational Data Mining (EDM2012), 19–21 June, 2012, Chania, Greece (pp. 57–64). International Educational Data Mining Society.
Kluger, A. N., & DeNisi, A. (1996). The effects of feedback interventions on performance: A historical review, a meta-analysis, and a preliminary feedback intervention theory. Psychological Bulletin, 119(2), 254–284.
Kobsa, A. (2007). Privacy-enhanced web personalization. In P. Brusilovsky, A. Kobsa, W. Nejdl (Eds.), The adaptive web: Methods and strategies of web personalization (pp. 628–670). Springer. doi:10.1007/978-3-540-72079-9_4.
Kulhavy, R. W., & Stock, W. A. (1989). Feedback in written instruction: The place of response certitude. Educational Psychology Review, 1(4), 279–308.
Lang, C., Heffernan, N., Ostrow, K., & Wang, Y. (2015). The impact of incorporating student confidence items into an intelligent tutor: A randomized controlled trial. In O. C. Santos et al. (Eds.), Proceedings of the 8th International Conference on Educational Data Mining (EDM2015), 26–29 June 2015, Madrid, Spain (pp. 144–149). International Educational Data Mining Society.
Lewkow, N., Zimmerman, N., Riedesel, M., & Essa, A. (2015). Learning analytics platform: Towards an open scalable streaming solution for education. In O. C. Santos et al. (Eds.), Proceedings of the 8th International Conference on Educational Data Mining (EDM2015), 26–29 June 2015, Madrid, Spain (pp. 460–463). International Educational Data Mining Society.
Lockyer, L., Heathcote, E., & Dawson, S. (2013). Informing pedagogical action: Aligning learning analytics with learning design. American Behavioral Scientist, 57(10), 1439–1459. doi:10.1177/0002764213479367
Lonn, S., Aguilar, S., & Teasley, S. D. (2013). Issues, challenges, and lessons learned when scaling up a learning analytics intervention. Proceedings of the 3rd International Conference on Learning Analytics and Knowledge (LAK ’13), 8–12 April 2013, Leuven, Belgium (pp. 235–239). New York: ACM. doi:10.1145/2460296.2460343
Lynch, C., Ashley, K. D., Aleven, V., & Pinkwart, N. (2008). Argument graph classification via genetic programming and C4.5. In R. S. J. d. Baker, T. Barnes, & J. E. Beck (Eds.), Proceedings of the 1st International Conference on Educational Data Mining (EDM’08), 20–21 June 2008, Montreal, QC, Canada (pp. 137–146). International Educational Data Mining Society.
Madhyastha, T. M., & Tanimoto, S. (2009). Student consistency and implications for feedback in online assessment systems. In T. Barnes, M. Desmarais, C. Romero, & S. Ventura (Eds.), Proceedings of the 2nd International Conference on Educational Data Mining (EDM2009), 1–3 July 2009, Cordoba, Spain (pp. 81–90). International Educational Data Mining Society.
Mavrikis, M. (2008). Data-driven modelling of students’ interactions in an ILE. In R. S. J. d. Baker, T. Barnes, & J. E. Beck (Eds.), Proceedings of the 1st International Conference on Educational Data Mining (EDM’08), 20–21 June 2008, Montreal, QC, Canada (pp. 87–96). International Educational Data Mining Society.
McKay, T., Miller, K., & Tritz, J. (2012). What to do with actionable intelligence: E2Coach as an intervention engine. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge (LAK ʼ12), 29 April–2 May 2012, Vancouver, BC, Canada (pp. 88–91). New York: ACM. doi:10.1145/2330601.2330627
Mendiburo, M., Sulcer, B., & Hasselbring, T. (2014). Interaction design for improved analytics. Proceedings of the 4th International Conference on Learning Analytics and Knowledge (LAK ʼ14), 24–28 March 2014, Indianapolis, IN, USA (pp. 78–82). New York: ACM. doi:10.1145/2567574.2567628
Mory, E. H. (2004). Feedback research revisited. In D. H. Jonassen (Ed.), Handbook of research on educational communication and technology (Vol. 2, pp. 745–783). Mahwah, NJ: Lawrence Erlbaum.
Nicol, D., & Macfarlane‐Dick, D. (2006). Formative assessment and self‐regulated learning: A model and seven principles of good feedback practice. Studies in Higher Education, 31(2), 199–218. doi:10.1080/03075070600572090
Olsen, J. K., Aleven, V., & Rummel, N. (2015). Predicting student performance in a collaborative learning environment. In O. C. Santos et al. (Eds.), Proceedings of the 8th International Conference on Educational Data Mining (EDM2015), 26–29 June 2015, Madrid, Spain (pp. 211–217). International Educational Data Mining Society.
Ostrow, K. S., & Heffernan, N. T. (2014). Testing the multimedia principle in the real world: A comparison of video vs. text feedback in authentic middle school math assignments. In J. Stamper, Z. Pardos, M. Mavrikis, & B. M. McLaren (Eds.), Proceedings of the 7th International Conference on Educational Data Mining (EDM2014), 4–7 July, London, UK (pp. 296–299). International Educational Data Mining Society.
Pardo, A., Ellis, R. A., & Calvo, R. A. (2015). Combining observational and experiential data to inform the redesign of learning activities. Proceedings of the 5th International Conference on Learning Analytics and Knowledge (LAK ʼ15), 16–20 March 2015, Poughkeepsie, NY, USA (pp. 305–309). New York: ACM. doi:10.1145/2723576.2723625
Pardos, Z. A., Bergner, Y., Seaton, D. T., & Pritchard, D. E. (2013). Adapting Bayesian knowledge tracing to a massive open online course in edX. In S. K. DʼMello, R. A. Calvo, & A. Olney (Eds.), Proceedings of the 6th International Conference on Educational Data Mining (EDM2013), 6–9 July 2013, Memphis, TN, USA (pp. 137–144). International Educational Data Mining Society/Springer.
Pechenizkiy, M., Calders, T., Vasilyeva, E., & De Bra, P. (2008). Mining the student assessment data: Lessons drawn from a small scale case study. In R. S. J. d. Baker, T. Barnes, & J. E. Beck (Eds.), Proceedings of the 1st International Conference on Educational Data Mining (EDM’08), 20–21 June 2008, Montreal, QC, Canada (pp. 187–191). International Educational Data Mining Society.
Pechenizkiy, M., Trcka, N., Vasilyeva, E., van der Aalst, W., & De Bra, P. (2009). Process mining online assessment data. In T. Barnes, M. Desmarais, C. Romero, & S. Ventura (Eds.), Proceedings of the 2nd International Conference on Educational Data Mining (EDM2009), 1–3 July 2009, Cordoba, Spain (pp. 279–288). International Educational Data Mining Society.
Peddycord III, B., Hicks, A., & Barnes, T. (2014). Generating hints for programming problems using intermediate output. In J. Stamper, Z. Pardos, M. Mavrikis, & B. M. McLaren (Eds.), Proceedings of the 7th International Conference on Educational Data Mining (EDM2014), 4–7 July, London, UK (pp. 92–98). International Educational Data Mining Society.
Piech, C., Huang, J., Chen, Z., Do, C., Ng, A., & Koller, D. (2013). Tuned models of peer assessment in MOOCs. In S. K. DʼMello, R. A. Calvo, & A. Olney (Eds.), Proceedings of the 6th International Conference on Educational Data Mining (EDM2013), 6–9 July 2013, Memphis, TN, USA (pp. 153–160). International Educational Data Mining Society/Springer.
Pinkwart, N. (2016). Another 25 years of AIED? Challenges and opportunities for intelligent educational technologies of the future. International Journal of Artificial Intelligence in Education, 26(2), 771–783. doi:10.1007/s40593-016-0099-7
Pintrich, P. R. (1999). The role of motivation in promoting and sustaining self-regulated learning. International Journal of Educational Research, 31, 459–470. doi:10.1016/S0883-0355(99)00015-4
Romero, C., & Ventura, S. (2013). Data mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(1), 12–27. doi:10.1002/widm.1075
Ruiz, S., Charleer, S., Urretavizcaya, M., Klerkx, J., Fernandez-Castro, I., & Duval, E. (2016). Supporting learning by considering emotions: Tracking and visualisation. A case study. Proceedings of the 6th International Conference on Learning Analytics and Knowledge (LAK ʼ16), 25–29 April 2016, Edinburgh, UK (pp. 254–263). New York: ACM. doi:10.1145/2883851.2883888
Shute, V. J. (2008). Focus on formative feedback. Review of Educational Research, 78(1), 153–189. doi:10.3102/0034654307313795
Simsek, D., Shum, S. B., De Liddo, A., Ferguson, R., & Sándor, Á. (2014). Visual analytics of academic writing. Proceedings of the 4th International Conference on Learning Analytics and Knowledge (LAK ʼ14), 24–28 March 2014, Indianapolis, IN, USA (pp. 265–266). New York: ACM. doi:10.1145/2567574.2567577
Snow, E. L., Allen, L. K., Jacovina, M. E., Perret, C. A., & McNamara, D. S. (2015). You’ve got style: Detecting writing flexibility across time. Proceedings of the 5th International Conference on Learning Analytics and Knowledge (LAK ʼ15), 16–20 March 2015, Poughkeepsie, NY, USA (pp. 194–202). New York: ACM. doi:10.1145/2723576.2723592
Stefanescu, D., Rus, V., & Graesser, A. C. (2014). Towards assessing students’ prior knowledge from tutorial dialogues. In J. Stamper, Z. Pardos, M. Mavrikis, & B. M. McLaren (Eds.), Proceedings of the 7th International Conference on Educational Data Mining (EDM2014), 4–7 July, London, UK (pp. 197–201). International Educational Data Mining Society.
Suthers, D., & Verbert, K. (2013). Learning analytics as a “middle space.” Proceedings of the 3rd International Conference on Learning Analytics and Knowledge (LAK ’13), 8–12 April 2013, Leuven, Belgium (pp. 1–4). New York: ACM. doi:10.1145/2460296.2460298
Verbert, K., Duval, E., Klerkx, J., Govaerts, S., & Santos, J. L. (2013). Learning analytics dashboard applications. American Behavioral Scientist, 57(10), 1500–1509.
Verbert, K., Govaerts, S., Duval, E., Santos, J. L., Assche, F., Parra, G., & Klerkx, J. (2014). Learning dashboards: An overview and future research opportunities. Personal and Ubiquitous Computing, 18(6), 1499–1514. doi:10.1007/s00779-013-0751-2
Wen, M., Yang, D., & Rosé, C. P. (2014). Sentiment analysis in MOOC discussion forums: What does it tell us? In J. Stamper, Z. Pardos, M. Mavrikis, & B. M. McLaren (Eds.), Proceedings of the 7th International Conference on Educational Data Mining (EDM2014), 4–7 July, London, UK (pp. 130–137). International Educational Data Mining Society.
Whitelock, D., Twiner, A., Richardson, J. T. E., Field, D., & Pulman, S. (2015). OpenEssayist: A supply and demand learning analytics tool for drafting academic essays. Proceedings of the 5th International Conference on Learning Analytics and Knowledge (LAK ʼ15), 16–20 March 2015, Poughkeepsie, NY, USA (pp. 208–212). New York: ACM. doi:10.1145/2723576.2723599
Wiliam, D., Lee, C., Harrison, C., & Black, P. (2004). Teachers developing assessment for learning: Impact on student achievement. Assessment in Education: Principles, Policy & Practice, 11(1), 49–65. doi:10.1080/0969594042000208994
Winne, P. H. (2014). Issues in researching self-regulated learning as patterns of events. Metacognition and Learning, 9(2), 229–237. doi:10.1007/s11409-014-9113-3
Winne, P. H., & Baker, R. (2013). The potentials of educational data mining for researching metacognition, motivation and self-regulated learning. Journal of Educational Data Mining, 5(1), 1–8.
Wise, A. F. (2014). Designing pedagogical interventions to support student use of learning analytics. Proceedings of the 4th International Conference on Learning Analytics and Knowledge (LAK ʼ14), 24–28 March 2014, Indianapolis, IN, USA (pp. 203–211). New York: ACM.
Zimmerman, B. J. (1990). Self-regulated learning and academic achievement: An overview. Educational Psychologist, 25(1), 3–17. doi:10.1207/s15326985ep2501_2
Title
Provision of Data-Driven Student Feedback in LA & EDM
Book Title
Handbook of Learning Analytics
Pages
pp. 163-174
Copyright
2017
DOI
10.18608/hla17.014
ISBN
978-0-9952408-0-3
Publisher
Society for Learning Analytics Research
Authors
Abelardo Pardo1
Oleksandra Poquet2
Roberto Martínez-Maldonado3
Shane Dawson2
Author Affiliations
1. Faculty of Engineering and IT, The University of Sydney, Australia
2. Teaching Innovation Unit, University of South Australia, Australia
3. Connected Intelligence Centre, University of Technology Sydney, Australia
Editors
Charles Lang4
George Siemens5
Alyssa Wise6
Dragan Gašević7
Editor Affiliations
4. Teachers College, Columbia University, USA
5. LINK Research Lab, University of Texas at Arlington, USA
6. Learning Analytics Research Network, New York University, USA
7. Schools of Education and Informatics, University of Edinburgh, UK